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TOWARD A THEORY OF NONLINEAR STOCHASTIC REALIZATION

Anders Lindquist*, Sanjoy Mittert, and Giorgio Picci §

1. INTRODUCTION

The following is a central problem in stochastic systems theory: Given a station-

ary stochastic process {y(t);tE R}, find a (possibly infinite-dimensional) vector

Markov process {x(t);tE RI, called the state process, and a function f so that y(t)

f(x(t)) for all teR. Moreover, find a stochastic differential equation driven by a

Wiener process and having the state process x as its unique solution. The problem of

characterizing the family of all such representations is known as the stochastic reali-

zation problem.

There is by now a rather comprehensive theory of stochastic realization for the

case that {y(t);tE]R} is Gaussian [1-3], in which case the representations can be taken

to be linear, i.e. both f and the stochastic differential equation are linear. This

linear theory can be applied to non-Gzussian processes also, but then we need to give

up the requirement that x is Markov and that it is generated by a Wiener process, re-

placing these concepts by "wide sense Markov" [4] and "orthogonal increment process"

respectively. If we are not willing to do so, a noniinear stochastic realization

theory is needed. That is the topic of this paper.

In this paper we shall apply Wiener's theory of homogeneous chaos [5,6] to the

nonlinear stochastic realization problem. For simplicity and ease of notation we shall

assume that the process y is scalar, although the machinary which we develop is suffi-

cient to accommodate also the vector case. Other assumptions, such as y admitting an

innovation representation, are however crucial to our approach. (In this respect, it

might be more appropriate to consider a process y with stationary increments, and indeed

with minor modifications we could have done so.) In the extension of this work we see

the possibility of making contact with nonlinear filtering [7,8] and that is partially

a motivation for this work.

2. PROBLEM1 FORMULATION

Let {y(t);t eR} be a non-Gaussian stationary stochastic process which is mean-

square continuous, purely nondeterministic, and centered, and let V be the sigma-field
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generated by y. Then define H to be the Hilbert space of all centered V-measurable

random variables, having inner product <5,,q> =rE{n}. Since y is stationary there is a

strongly continuous group of unitary operators {Ut;tE R} on H, called the shift, such

that y(t+s) =Uty(s) for all t and s [9]. Let Vt and VY be the sigma-fields generatedt t
by {y(s);s< t} and {y(s);s t} respectively.

Next assume that y has an innovation process {v(t);tE IR, by which we shall here

mean a Wiener process such that o{v() -v a) ;r,a t} =Yt. (Here a{.} denotes the sigma-

field generated by the random variables inside the curlybrackets.) Then, by symmetry,

it also has a backward innovation process {v(t);tER}, i.e. another Wiener process such
+

that {(TC)-j(Ca);,,a > t} = V. Now, since Y= a{v(t);tER} =a{(t);t ER} we can apply

Wiener's homogeneous chaos theory [5,6]. Let H1 denote the Gaussian space [5] generated

by {v(t);teR} or, which is equivalent, by ({&(t);telR}. Since y is mean-square contin-

uous, H1 is a separable space, and therefore H1 has a countable orthonormal basis

{i}i=0 . Now, let Pn be the (closed) linear subspace of all polynomials in {Si}i=0 of
degree not exceeding n. Next define H =P eP i e. the orthogonal complement of

Pn-t in Pn. Then it can be shown [5,6] that

H = H H2 H3 ... (1)

where e denotes orthogonal direct sum. The space Hn is called the nh homogeneous chaos

of H. Since y(O) , H, there is an orthogonal decomposition

y(O) = Yl(0) + Y2 (O) + Y3 (0) + ... (2)

where Yn(0) Hn . It is easy to see that each chaos Hn is invariant under the shift Ut,

and consequently, for any t eaR, we have a decomposition such as (2) for y(t) in terms

of yn(t) :=Utyn(O), n=1,2,3...

In order to obtain a state space description we introduce a past space H and a

jture space H+ as follows. Let H-(H +) be the subspace of all centered Y -measurable

(Y -measurable) random variables. Then, defining H1 and H1 to be the Gaussian spaces

generated by {v(T)-v(a);t, 0} and {v0(T)-V(a);,G 0} respectively, we obtain the

chaos expansions

H' 1 e HH 2 a H. · ... (3a)

lH = H1 · H+ 9 H3+ ... (3b)

a Hn ' and H + n for all n. Note that H1 nH but
n n n n Hn

H v H+ H.

Now, if y were a Gaussian process, y would have a component only in the first

chaos, i.e. y = Y, and consequently state spaces for y could be constructed along the

lines of [1,2] by finding the minimal Markovian (H.,H1)-splitting subspaces in H1.

[We recall that, for two subspaces A and B, X is an (A,B)-spZitting subspace if

<EXa,EXs> = <a,8> for all a e A and ~ e B, where EX denotes orthogonal projection on the

subspace X.] However, for a non-Gaussian process y, there will be some nontrivial com-

ponent yn, n >1, and consequently the state space construction will have to involve at

least those higher chaoses in which y has a component. To this end define the index set



N := n I Yn(0) O} u {1}. For reasons which will soon be evident, we shall have to al-

ways include the first chaos in our analysis. (In particular, see Section 7.)

Hence we call X a state space for y if

n N n (4)

where Xn c H is an (Hn,Hn)-splitting subspace, and X is Markovian in the sense that,

if X :=C{X}, X :=c{t\V 0UtX} and X
+ :={Vt0Ut X}, X- and X are conditionally indepen-

dent given X; we shall write this X - X+ IX. We say that X is mini.mZl if there is no

other state space X' for which X' :=c{X'} is properly contained in X.

The problem at hand is now to construct all minimal state spaces for y and to ob-

tain a dynamical representation (realization) for each of them.

3. THE STRUCTURE OF H

According to It6's Theorem [10]

Hn = {In(f;v) IfE L2( Rn) } (53

where In is the multiple Wiener integral
t t1

In(f;v) = ... f(tlt2, ... ,t)dv(tl)...d(tn) (6)

and 2 QRn) are the symmetric functions in L20Rn). Although the region of integration

is such that (5) remains the same if L20Rn) is exchanged for L2 cRn), we prefer the

former since we have a one-one correspondence between elements in Hn and L2CRn). In

fact, we can establish an isometric isomorphism between these spaces [5,6,10]. Nlow,

for i=1,2,...,n, let iE Hl be arbitrary. Then there exist unique functions fi E L2 R)

such that ni = f_(rit)dv(t). Next define

no 2 * *Pnn= n! I (f;v) (7)B71 * BT2 * "' * Bn n
where

~f(t~1, t %lf t 2 2(tt... f n) (8)
fftl't2'' 'tn) = n! rG 1 2 

G being the symmetric group of permutations of n letters, Since finite linear combina-

tions of functions of type (8) are dense in L2 Rn), Ito's Theorem implies that

Hn = sp{nl * '2 *n 1 nllT2' 'n .lE (9a)

where sp denotes closed linear hull. We shall write this as

H = HI * H1 * * HI. (9b)

By ItS's formula [11; p.38]

ll * n2 * ' ' rln ( r2 3 * ' ' ' * rln) q l

-n 2 ... *nkl n+ *---. *fin) · <l', n k> (10)
k

which can be solved recursively. For example,



rl *n2 = qtq2 -<'-, ' 2>

q1 Tl*q2* 3 = q ln2"' 3 - '1 < <2'1n3' 3> -n 3<l<r>'r 

The *-operation is obviously commutative. In particular,

* *n * " * n, = hn (n, < n,n>%) (!1)

n times

(in the sequel we shall write this nq) where

hx,) = n exp n (12)

n=0,1,2,..., are the Hermite polynomials (cf [11; p.37]). Analogously to (9) we have

n = H H " H1 (13a)

n = H1 * H1 * . . .* H1 (13b)

Let H 1 =H 1 s H 1 denote the symmetric tensor-product Hilbert space of HI
by itself taken n times. Then for arbitrary Bioic H1 i=i,2,...,n, with <- >n the

inner product in Hi, we have

2in 2 n 52 -*** s in'nl @2 *-- 3 >1 nI <ri 'ti ><n2 n2 >.. '< 'n> (14)<El ® E2 a " ' ® n 'T1l a Ts 1 2® " 3 l 's n>n = nT ' .ITI _ r T T n

where i1 ° e ...2 in is the symmetric tensor product [5,6]. Since finite linear com-

binations of such tensor products are dense in H1 it is now easy to see that H is

isometrically isomorphic to ~L(Rn) and hence to For n=2 we can illustrate this

by factoring the symmetric bilinear map Cql1 n2) +nlq 2 as follows:

H x H H H H

1 1

where '2 is the unique linear map which makes the diagram commute; p2 is unitary. Sim-

ilar unitary maps 9n are defined for n=3,4,...

If A1,A2,.. are linear operators in H1, we define A *A 2 * An Hn H via

(A1 *A * *A n)(rl *1 2 rln ) = (Alnl) * (A2 n 2) * ... * (AnP n )

on a dense set in Hn and then extend it continuously to all of H n. We define

Al 3A @ .. sAn :Ha +Hn analogously. For n=2 we have then the following picture:

Al * A21 ~2 nA H 1 i12 H2

02 ~2

V A Al An
HI e HI -H1 H

and analogously for n > 2.



4. STATE SPACE CONSTRUCTION

THEOREM 1. The subspace Xc H is a minimal state space for y i-f and onZy iF

X := Xn (1 5a)
n~N

where X1 is a minimal ira2kovian (H1,H;) -spZitting subspace and

Xn X X1 X ... * X1 (15b)

(n times). Then each Xn is a minimaZ (Hn,Hn) -splitting subspace.

The proof of this theorem is based on the following lemmas.

LEMMA 1. Let r =nlrn2 ® " 'nn where jiE H1 for i=l,2,...,n. Let X be a subspace

of H 1 . Then

E x '° *n= (E 1i ) a (E n2) o ... £ (E 2 ) 

PROOF. Let fi :=E'Xli, and let :=a 2o... On where E1V2 .n are arbitrary ele-

ments in X. Then, by (14),

<rl l~rl"®" : °nn- 1 ®~. 2 D'" n>

n! {<rl1-,1 2'>r2,2 >' -'> + <1 T n llrl>< rl2- rl2,)0.2>..- '<>, T > r

' <* n!'il > < q2 'i n *en7r
1 Gn n

which equals zero since .i - ii £ X. a

LEMMA 2. Let X1 be a subspace of H1, and let Xn be defined by (15b). Then X1 is an

(HHll)-splitting subspace if and only if Xn is an (Hn,H )-spZitting subspace.

PROOF. Due to isomorphism, we can identify Hn, H+ and Xn with (H)n, (H)n and X

respectively. But Lemma 1, (14), and the definition of splitting subspace imply that
no + n o nH L H1 1X if and only if (H1;) (H;1 ) I X1 . Hence the lemma follows. D

LEMMA 3. Let X1 and Xn be the splitting subspaces of Lenmrr 2. Then Xn is minimal if

and only if X1 is minimaZl.

PROOF. By Proposition 1 in [12] it suffices to show that the condition EXH 1 =X1 is
Xn -XI +vequivalent to EXnH = X (bar over E stands for closure) and that nXEH = 1 is equivalent

n n IX I e
to E2XnH =Xn . By isomorphism EXnH=Xn can be identified with EX1 (H)n =X, which,

by Lemma 1, holds if and only if EX H1= X. A similar argument establishes the other

equivalence. O

PROOF OF THEOREM 1. Let the X described in the theorem be denoted X, and set X:=:aC(1 ) .

Then X is the space of all centered 6-measurable random variables in H [5,6], and
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a(X) =., Moreover, if X :=V UtX, it is not hard to see that X -=C(x ) =~(Xt), since

Ut n = (UtX )n* An analogous relation holds for summation over the future.

(if): Show that X is a minimal state space. Since X1 is Markovian, so is X. Hence,

in view of Lemma 2, X is a state space for y. Now assume that X is not minimal. Then

there is a state space X such that X :=c(X) is properly contained in X. Then, since

all i E X are i-measurable and X is the space of all centered X-measurable random vari-

ables, Xc R. Therefore X1 must be a proper subset of X1, or else X a(X1) =c(X1) =X.

This contradicts the minimality of X1.

(only if): Let X be a minimal state space for y. First let us assume that X1 is not

minimal. Then there is another (H1,H1)-splitting subspace X1 which is a proper sub-

space of X1. Let X =a(X1), and let X be the space of all 2-measurable elements in H.

Clearly X cX :=a(X). We want to show that this inclusion is proper, contradicting

minimality of X. But this is the case, for there is a i e X1 such that i 1 X Conse-

quently, by the Gaussian property, a{"} and X are independent, while both are subfields

of X. Hence X1 must be minimal, and X =X1. Next assume that Xn is not of the form

(15b), i.e. Xnt Xn. Then since Xn is minimal (Lemma 3), Xn tXn, i.e. there is a i E X

which does not belong to X and consequently is not X-measurable. Hence X is a proper

subfield of X contradicting minimality of X. Therefore X = X. Finally X is Markovian

only if X1 is Markovian. The last statement of the theorem follows from Lemma 3. 0

5-. THE STATE SPACE COMPONENT OF THE FIRST CHAOS

Thus it remains to determine the minimal Markovian (H ,H1) -splitting subspaces X1.

This is almost the problem solved in [1-3]. To explain how it differs, let 5 H1 n H

be defined in the following manner. If Y1(0) O0, set S:=Yl(O), otherwise let it be

arbitrary. (Remember that H nH i .) Next define the process z(t) :=UtT. Then

z(t) E H1 for all t. Moreover,

Hl(z) cH 1 (16a)

1

| Hi(z) c H+ (i6b)

where H!(z) and H+(z) are the closed linear hulls of the random variables {z(t);t <0}
and {z(t);t2 0} respectively. Since y is purely nondeterministic and mean-square con-

tinuous, so is z. Therefore z has a spectral density D(iw). A scalar solution W of

the equation

W(s)W(-s) = ~(s) (17)

will be called a (full-rank) spectral factor of z. Now, if y is Gaussian as assumed

in [1,2], z =y and we have equality in each of relations (16). Then there is a proce-

dure in [1,2] to determine X1 from a certain pair (W,W) of spectral factors. However,

in the non-Gaussian case, z~ y, and we cannot assume that relations (16) hold with

equality, not even when z=Y 1l Hence there is a "mismatch" between the process z and

the geometry in H1, and consequently the procedure of [1,2] will have to be modified.



Fortunately the basic results of [1,2] depend in no crucial way on the spectral

factor construction. The following result found in [1,2] is a consequence of the geom-

etry in H1 only. The theorem requires some new notation: For any Wiener process

{u(t);tERj c Hi, let Hl(du) and H+(du) be the Gaussian spaces generated by the incre-

ments {u(T)-u(c);T,a< 0O} and {u(T) -u(C) ;T,a Ž> 0} respectively. In particular, we have

H (dv) =H1 and H (dv) =H1. Here and in the sequel, when we talk of a "Wiener process,"

we shall always mean a centered Gaussian process defi-ned on the whole real line by a

spectral representation

t-1
u(t) = f ei d(iw) , (18)

where dCu is a Gaussian orthogonal stochastic measure such that EjdGuj 2dw.

THEOREM 2. A subspace X1 c HI is a minimal iMarkovian (H1 ,Hj)-splitting subspace if and

only if

X = Hl(du) e Hl(du) (19)

for some pair (u,u) of Wiener processes in H1 such that

H1 (du) c H1 (du) (20a)

HI c H1(du) (20b)

HI c H .(d'd) (20c)

HC(du) = HI v Hi(du) (20d)

H;(du) = H1 v H1 (du) . (20oe)

The processes u and u (which are essentially unique) are called respectively the

forward and the backward generating processes of X. (Condition (20a) is equivalent to

Hl(du) and Hl(du) intersecting perpendicularly. Moreover, (20d) is an observability

and (20e) a constructibility condition [1,2].)

The Gaussian space of any Wiener process u in H1 coincides with H1 [9], and conse-

quently any n e H1 can be written

=n f f(-t)du(t) (21a)

where f E L2 R), or equivalently,

n = ff(iw)du(iw) (21b)

where w-+f (iw) is the Fourier transform [9]. [We shall refer also to the function f

as the Fourier-transform, although it properly should be called the (double-sided)

Laplace-transform.] Relations (22) establishes an isometric isomorphism between H1 and

L2OI), where I is the imaginary axis. Let Tu :H1 L2 II) be the map Tun =f. Then it
can be seen that Tu is unitary. Let T* denote the adjoint, i.e. n = T*f, which is rela-tionu (21b)u u
tion (21lb). The shift U corresponds to e under the isomorphism Tt Tu



LEMMA 4. There is a one-one correspondence between Wiener processes u in H, and. spec-

tral factors W of z described by the following rule. For each u, W:=TUC is a spectral

factor. For each spectral factor W, u defined by (18) and du=WGdv where G= 

is a Wiener process.

PROOF. Let W :=TC. Then

z(t) = e iWd, (22)

from which it is easy to see that the inverse Fourier transform of E{z(t)z(O)'} is

W(iL)W(-iw), establishing W as a spectral factor. In particular G is a spectral factor.

Therefore, for any spectral factor W, di :=W-1Gd4 is a Gaussian orthogonal stochastic

measure such that Eldul 2 =#2 d-, for dv is. Hence (18) is a Wiener process. 5

Next we introduce the Hardy spaces Ht and Ht Let H2(H2 ) be the subspace of L2,(! )2 2 2 2
of functions whose inverse Fourier-transforms vanish on the negative (positive) real

line. From (21) it follows that TuH (du) =H2 and T H (du) =H A function K which is

bounded and analytic in the open left half-plane and has modulus one on the imaginary

axis is called inner. Define K*(i) := K(-iw) ; K* is the inverse of K. If fe H2 and
+ + +

K is inner, fr H2 and H K is a subspace of H2 . Let H(K) denote the orthogonal com-

plement of H2K in H2.

THEOREM 3. Let Hl n H1 be arbitrary, and set G := and G :=T. Let :=G/G.

-Then X1 is a minimal Markovian (H1 ,H )-spZitting subspace if and only if there is a

pair of inner functions (Q,Q*) such that K r:=QQ* is also inner, K and Q are coprime,

K and Q* are coprime, and

X : T*H(K) , (23)

where u is the Wiener process (18) with d = Q*dv.

PROOF. We present an appropriately modified version of the proof in [1,2]. The idea

is to translate conditions (20) to the Hardy space setting and apply Beurling's Theorem

[13]. To this end, first note that if ul and u2 are two Wiener processes in H1, and

W1 and W2 are their corresponding spectral factors,

T n ( CT n) (W2/W1) (24)u2 ul 2 1 (24)

for any n E H1, as is easily seen from Lemma 4. Then, if W and W are the spectral fac-

tors corresponding to u and u respectively, applying the map Tu to (20a), (20b) and

(20e) and T- to (20c) and (20d) yields

H2K c Hl where K := W/W (25a)

H Q c H2 where Q W/G (25b)

H2Q c H2 where Q := W/G (2Sc)

H (H Q) v (HK*) (25d)

Hf (H2Q) v (CHK) r25e)
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Now, since Hl(dU) is invariant under the shift (Ut;t< 0}, H2K is invariant under

{e ;t< O}. Therefore, by Beurling's Theorem [13], (25a) holds if and only if K is

inner. In the same way we see that (25b) is equivalent to Q being inner and (25c) to

Q being inner with respect to H 2, i.e. Q* inner. Moreover, (25d) and (25e) are valid

if and only if the stated coprimeness conditions hold [13], and (19) is equivalent to

T X =H2 9 H K) =:H(K), i.e. (23). The statement about u follows from Lemma 4. C

REMARK. Let us pinpoint in what way this theorem differs from the corresponding result

in [1,2]. In the case studied in [1,2], the pairs (W,W) which generate splitting sub-

spaces are precisely those for which WEH , We H2, and K is inner. In the present

setting these three conditions must also hold, but in addition we must have W =GQ and

W= GQ. These factorizations correspond to the inner-outer factorizations of [1,2],

but the difference is that now G and G are not outer. Consequently, some of the pairs

(W,W) mentioned above will be excluded. Note that the innovation process does not cor-

respond to an outer spectral factor of z, since H is not the predictor space of z. C

6. THE STATE PROCESS

We recall from Section 2 that

y(t)= y y(t) (26a)
neN

where
t l tn-l

yn(t) : f { ..j gn( t-tl, t-t2 ''',. t-tn dv(tl)dv(t2)..''' dv(t (26b)

for some gneL2fRn). Let us assume that this innovation representation is given, i.e.

that the functions {gn;n E N} are known.

Let us now consider a minimal state space X with forward generating process u.

Then, since H cH (du),

Yn(0) e Hn(du) := H1 (du) * H1 (du) * ... * H(du) (27)

(n times) and consequently there is a representation

0 tl tn-l

Yn(0) = f I ... Wn (-t,-t,...,-tn)dU(tl)du(t).... (28)

for some L2 (Cn). Defining wn to be zero whenever some argument is zero, we may write

this Yn(0) =In(Wn;u). By the same recipe we write Yn(0) = I(gn;v). We need to deter-

mine w from a, To this end, let f L2 1n) be the n-fold Fourier-transform

~~~~~~~iLet Ft i t

Let Fn L2CR
n ) +L2F (n) be the operator defined by f = Ff. The following is a multidi-

mensional version of (21).

LEMMA 5. Let fE L2 CR
n ) and set := Fnf. Let u be a Wiener process (18). Then-

In (f;u) = I n ( f ; u) . (29)

-- ~ ~ ~~ n-- - -~~~~- -
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PROOF. First let f be of the form (8). Then f has this form too, and fi = Flfi. From

(21) we have

rnit fi(-t)du(t) = fi(iw)dU(iw)

Then, by Its's formula, i.e. (11-) with v exchanged for u or u, each member of (29) can

be reduced to the same expression in nl^n2.. 'n' Hence (29) holds for functions of

type (8). Then, since finite linear combinations of functions of type (8) are dense

in L2 cRn) or L2 CIn), (20) holds in general. E

Consequently, defining W :=F w and G :=Fngn, Wn can be determined from gn via
n n n n n

the relation

nC(i 1~'·'' = Gn (iL1. l* )QCiQ 1 )) Q(',nj (30)

for d~ = Qdi (Theorem 3).

It is well-known [6], and we have already used this fact in Section 2, that

n- In(f;u) defines an isomorphism between Hn and L 2 In). More precisely T(n) :H +L 2on),

defined by T( n ) l =Ž, is a map with the property that (n!)½T(n) is unitary. The space

of Fourier-transforms of functions (such as Wn) in L2 (Rn) which vanish whenever an ar-

gument is negative, can be identified with (H2)n@ so that T(n)H (du) = (H2)n® In the
2 n 2

sequel we shall use precisely this realization of the tensor-product Hilbert space

(H2)nQ. Then the tensor product fl f2 o fn is given by (8). Also, for subspaces

A1,A2,...,A n in Hn n

Tn ({ 1 *A 2 - ... * An } = (TuA1 ) 3 (TUA2) C ... A (T A) (31)

so that in particular

T(n)X = H(K) ® H(K) o ... a H(K) (32)u n

(n times). Then, since Yn(O) e Xn, Wn EH(K)nh .

Following [1,2] we say that X is regular if H(K) contains only Fourier-transforms

of continuous functions. All X with dim X1<a are clearly regular. It can be shown

[1,2] that if X is regular the functional

vf = i m (iwl -'iW )dw dw (33)
(2~)n n

is bounded on H(K)n . Hence, since Vf f(0) where f f, there is a Bn H(K)n
n n

such that

f(O) = <fBn> ( n(34)

(Riesz Theorem). Next, as in [1,2], .we define a strongly continuous semigroup

{eAt ;t> 0} on H(K) by
eAt- = pH(K)e-iWt (s5)

where pH(K) denotes the orthogonal projection on the subspace H(K). Moreover define
nDO

the linear bounded operator Cn. H (K) +R given by
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Cnf =<W,f> (36)

Then the following lemma is a multilinear version of the construction in [14,15] which

is being used in [1,2].

LEMMA 6. The integrand in (28) admits the factorization

eAti At2 At
,t t ) C e @e ... e B (37)

for tlt 2 ... ,tn> 0.

PROOF. In view of (34)

( tl+i2 t +.. * 'i Jtn )

Since Wn H(K)3 , we have

ii: WnCtl ,t2.. <W'tn) =(WPpH(K) n 1 2t2 ' 2-inn
n 2-'2 "* **~tn) n e

which is the required result. O

Consequently

Yn(t) = CnXn(t) . (38)

where x (t) is the H(K) -valued process

t t n-l A(t-tl A(t-t
X ) = I I ... . .. e BndU(tl)... U(t (39)

If H(K) is infinite dimensional, {x (t);tER} is not an ordinary stochastic process

but must be defined in a weak sense [16]. Then the state process {x(t);t IR_} is de-

fined as the (possibly weakly defined) aneN H(K) -valued process with components xn;

n E N. This terminology is motivated by the following result developed along the lines

in [1,2].

PROPOSITION 1. Let X be a regular state space and Zet xn be given by (39). Then

{<f,xn(o)> n f H(K) } =Xn (40)
H(K) n

Moreover, for each n E N,

Xn 1 Hn(du) (41)

PROOF. Let 5 E Xn be arbitrary, and let f :=T n and f :=Fnf. Then, by Lemma 5,

tl t

: = f| ... f(tl,..., t t n) d u (t) . . . du t n) (42)
--co -rX) -c

By exchanging wn for f in the proof of Lemma 6, we obtain

f(tlt...,t) = r At nA n (43)
J H(K)n
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Then (42) and C43) together yield (40). In view of (19), X1c H l(du) . Hl(du), from

which (41) follows. Q

In partular, for n=l we can write (38) and (39) in the following suggestive form

(44){ dxl = .xldt + Bldu (44)
Y = C1 X1

The higher-chaos subsystems are nonlinear. In the next section we shall illustrate

this with an example.

Note that a backward realization for X generated by u is obtained by developing
-no + n®

the above analysis in (H2)n3 rather than in (HE2) . Whereas the forward property is

characterized by (41), the backward one is determined by Xn l Hn(di) for each n E N.

Finally, in the case that X is not regular, other constructions involving rigged

Hilbert spaces are possible [19].

7. THE FINITE-DIMENSIONAL BILINEAR CASE

To illustrate our point let us consider the simplest possible nonlinear problem.

Let the process y have the innovation representation

y(t) = jg l(t-a)dv(a) + f g2 (t -r,t-a)dv(a)dv(r) (45a)

-co -ca

and the backward innovation representation

y(t) = f 1 (t-a)dO(a) +J g2(t-f t-a)dv )Cdo) . (45b)

t t t

Assume that G := Fl g is a rational function which is not identically zero. Then

G1 :=Fgl has the same properties, and Yl O. Moreover Yl has a rational spectral

density, namely {(s) :=G l (s)G (-s).

Now, setting r :=G 1/G1, find all pairs (Q,Q*) of inner functions such that

K := rQQ* is inner and coprime with Q and Q*. For each such solution form

X1 = JH(KQ*dv . (46)

Theorem 3 states that the X1-spaces obtained in this way are precisely the minimal

Markovian (H1 ,Hi)-splitting subspaces. In particular, Q1 =1 yields X1 =EHiH1, and

Q=1 yields X1=EH'H
. Since r is rational, it can be shown that K must be rational,

and consequently X1 is finite-dimensional [17]. In fact, all X1 have the same dimen-

sion n [1,2]. By using the procedure described in Section 7 of [i3] we can determine

an nxn-matrix A1 and an nxl-matrix B1 from K and a lxn-matrix C1 from W :=GQ so that

dxl Alxldt Bldu 
whlll 1sp~~xl~~~t),~~ · · · ~,(t)t(4 7)

where sp{x l(t),...,xn(t)} =UtXi, Ht1du) Xi and
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u(t) = e ie-l Q*(iw)dv d (48)

To each X1 there corresponds a minimal state space, namely

X = X1 e X2 (49a)

where

X2 = X1 X1 . (49b)

Hence, for each t, the ½n(n+l) random variables x "1:= (t)*xj (t);j< i span Ut 2.

(Remember that x1j =x31 .) Let {x 2(t);tER} be the ½n(n+l)-dimensional stationary vector

process with components xj] (t). Applying Ito's differentiation rule [6] to

xl (t) = xl(t)xj(t) - E{x (t)x (t)}

we obtain

nj kj ·k 1
dxlt) [aikx1 (t)+a (t)dt + (bix (t) +bjxl(t))du

k=l

where aik and bi are the components of A1 and B1 respectively. Defining the

½n(n+l)x½n(n+l)-matrix A2 and the ½n(n+l)xn-matrix B2 appropriately, this can be written

dx2 = A2x2dt + B2xldu . (50)

Integrating this bilinear equation we get an expression of type

-t -n
X2(t) =i j Jf(t-zt-a)du(a)du(z),

where f is a vector-valued function. Moreover

Y2(t) = J w2 (t-T,t-o) du(a)du(T) ,
-co -co

where w2 is obtained from g2 via formula (30). Now, since Y2 (0) E X2, there are real

numbers {c k;k=l,2,... ,n(n+1)} such that

w2 (Tr,) = Ck fIk ( T, )
k

and these numbers can be determined by known methods. Let C2 be the ½2n(n+l)-dimensional

row vector with components ck. Then

Y2(t) = C2x2 (t) . (s)

Since y = Yl + Y2'

dxL = Alxldt + Bldu

dx 2 = A2x 2 dt + B2xldu (52)

= ClX 1 + C2x 2

is a realization of y, for x = is a Markov process. Note that even if Y1 were

zero we would need to include xl is the state process x, for x2 by itself is not Markov.

~~~_ 1. -. ----. ~~~~~~~~~~~~~~~~~~~~
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Let x be the state process corresponding to X = EH 1H (in the coordinate-system

of (52)). It is shown in [1-3] that, for any X1, E Ix (0) =x1(0). Therefore, in

view of the definition of x2 and the fact that 2 = E * EH, EH 2x2(0) =x2(0). (EHL

and EH2 applied to a vector means that the projection is performed componentwise.)

Consequently the conditional expectation of x(t) given YV is
t

E tx(t) = x(t) (53)

for any realization (52). For this reason, remembering that the forward generating

process of EH H+ is the innovation v, we may call the system

dxl = AlXldt + Bldv

d 2 = A22dt + B2X d (54)

1 1 2 2

the steady state non-linear filter of (52), and we have shown that this filter is in-

variant over the class (52) of minimal realizations. A similar result can be obtained

for backward realizations in terms of v.

8. CONCLUDING REMARKS

The purpose of this paper is to investigate the structural aspects of the nonlinear

stochastic realization problem and to clarify basis concepts. This is a first step

toward a nonlinear realization theory. Hence we have not concerned ourselves with

algorithmic aspects of the problem, and our analysis is based on the availability of

an innovation representation, the actual determination of which is a nontrivial problem

in itself (see [20]).

The question of state space construction needs to be further studied. It could

be argued that condition (4) is too restrictive since there could well be

(en NHneNHn)-splitting subspaces which are not of the form (4), having a nonzero

angle with some (or even all) Hn. Hence, if we can do without realizations of indi-

vidual Yn but only need their sum y, it is possible that we are missing state spaces

of smaller size.

Our interest in the nonlinear realization problem emanates from its potential

value as a conceptual framework for certain classes of nonlinear filtering problems.

This will be the topic of a future study.
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